File Download Area

Information about "Australian Mathematics Competition AMC Warm-Up Paper 7 Senior Solutions.pdf"

  • Filesize: 52.48 KB
  • Uploaded: 25/09/2019 14:43:09
  • Status: Active

Free Educational Files Storage. Upload, share and manage your files for free. Upload your spreadsheets, documents, presentations, pdfs, archives and more. Keep them forever on this site, just simply drag and drop your files to begin uploading.

Download Urls

  • File Page Link
    https://www.edufileshare.com/eac724d3fb4777fd/Australian_Mathematics_Competition_AMC_Warm-Up_Paper_7_Senior_Solutions.pdf
  • HTML Code
    <a href="https://www.edufileshare.com/eac724d3fb4777fd/Australian_Mathematics_Competition_AMC_Warm-Up_Paper_7_Senior_Solutions.pdf" target="_blank" title="Download from edufileshare.com">Download Australian Mathematics Competition AMC Warm-Up Paper 7 Senior Solutions.pdf from edufileshare.com</a>
  • Forum Code
    [url]https://www.edufileshare.com/eac724d3fb4777fd/Australian_Mathematics_Competition_AMC_Warm-Up_Paper_7_Senior_Solutions.pdf[/url]

[PDF] Australian Mathematics Competition AMC Warm-Up Paper 7 Senior Solutions.pdf | Plain Text

AMC WARM-UP PAPER SENIOR PAPER 7 SOLUTIONS c 2009 Australian Mathematics Trust 1.3 x+1 =81→3 x+1 =3 4→x=3, hence (C). 2. m m−n+n n−m=m m−n−n m−n =m−n m−n =1, hence (D). 3.If each of the 12 houses gets 4 letters then there are 9 letters left. Giving one more letter to 8 houses (including George’s) means that George must also get the last letter, so he must get at least 6 letters, hence (D). 4.From the data, f(x)=1 1+x f(f(x)) =1 1+ 11+x =x+1 x+1+1 =x+1 x+2, hence (B).

Senior 7 Solutions Page 2 5.Alternative 1 Now 70 = 2×5×7, so we only have to look for two factors differing by 2 (as the difference in the capacity of the cases is 2 kg), and in this instance it must be 5 and 7, so the capacity of the standard case is 5 kg, hence (B). Note:in this particular example we do not need to know that 4 less cases are used. Alternative 2 Let the capacity of the smaller cases bex, then the capacity of the larger isx+2 and 70 x−70 x+2=4 70(x+2)−70x=4x 2+8x x 2+2x−35 = 0 (x+7)(x−5) = 0 x= 5 (neglecting the negative root), hence (B). 6.Landing within 1 m from the hole is landing within a circle radius 1 m, i.e. with areaπ×1 2=π. The area of the green isπ×12 2= 144π. Thus the probability of the ball landing within 1 m from the hole is π 144π=1 144, hence (E). 7.The average of thennumbers iskso their sum iskn.Whenxis added, there are n+ 1 numbers and their average becomesk+1. So kn+x n+1=k+1 kn+x=(n+1)(k+1) =kn+k+n+1 thusx=k+n+1, hence (A).

Senior 7 Solutions Page 3 8.JoinRT. This passes through the centre of the circleOas it subtends a right angle at the circumference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . .. . . .. . . .. . .. . .. .. . .. .. . .. .. . . .. ... .. ... .. ... .... ... ..... ...... ................................................................... ................................................................................................. .... ... .... .... .... ... ... .. ... .. .. .. .. .. .. .. .. . .. .. . .. . .. . . .. . . .. . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................................................... ..................................................................................................... ..................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................................................................................... ..................................................................................................... ................................................................................................... P S RO Q T M 1 30 ◦ Thus TRQ=30 ◦. So, from the right triangleTRQ TQ=2sin30 ◦=2× 12=1. Also,RQ=2cos30 ◦=√ 3. Thus the area of the rectangleRS T Q=1×√ 3=√ 3, hence (E). 9.Alternative 1 The total number of ways of choosing 3 numbers from 10 is 10 3 = 120. There are 8 triples containing the pair 1,2; 8 containing the pair 2,3; . . . 8 containing the pair 9,10, i.e 72 such triples. However we have counted twice the triples 123, 234,···, 8910, so only 64 triples are excluded. This leaves 120−64 = 56 triples available, hence (C). Alternative 2 Suppose 1≤a

Senior 7 Solutions Page 4 10.Label the sides of the octagon as shown. ha b cd ge f Label the sides of the octagon as shown. Ifg=7, thenh=8 and{a, c, e}={1,2,4}. Sinceb+f=d+h,thend=3. To maximise the area of the hexagon, we must havea=1,c=4,e=2,b=6and f= 5, giving an area of 30. Ifg=8, thenh=7 and{a, c, e}={1,2,5}or{1,3,4}. Sinceb+f=d+h, d=4 and{h, f}={4,6}. To maximise the area of the hexagon, we must havea=1,c=5,e=2,b=6and f= 4, giving an area of 36, hence (E).