File Download Area

Information about "Elementary Algebra Study Guide for the Accuplacer - CC.pdf"

  • Filesize: 215.99 KB
  • Uploaded: 14/12/2018 20:34:09
  • Status: Active

Free Educational Files Storage. Upload, share and manage your files for free. Upload your spreadsheets, documents, presentations, pdfs, archives and more. Keep them forever on this site, just simply drag and drop your files to begin uploading.

Download Urls

  • File Page Link
    https://www.edufileshare.com/9791c029758f57eb/Elementary_Algebra_Study_Guide_for_the_Accuplacer_-_CC.pdf
  • HTML Code
    <a href="https://www.edufileshare.com/9791c029758f57eb/Elementary_Algebra_Study_Guide_for_the_Accuplacer_-_CC.pdf" target="_blank" title="Download from edufileshare.com">Download Elementary Algebra Study Guide for the Accuplacer - CC.pdf from edufileshare.com</a>
  • Forum Code
    [url]https://www.edufileshare.com/9791c029758f57eb/Elementary_Algebra_Study_Guide_for_the_Accuplacer_-_CC.pdf[/url]

[PDF] Elementary Algebra Study Guide for the Accuplacer - CC.pdf | Plain Text

Elementary Algebra Study Guide for the ACCUPLACER (CPT) (developed by AIMS Community College) 5/23/2002 1:10 elemalg.rtf The following sample questions are similar to the format and content of questions on the Accuplacer Elementary Algebra test. Reviewing these samples will give you a good idea of how the test works and just what mathematical topics you may wish to review before taking the test itself. Our purposes in providing you with this information are to aid your memory and to help you do your best. I. Order of operations 1. 0 2 4 4 5 3    2. 3 2 4 1 5    3. 27 3˜ 4. 23 72  5. 2 2 7 49 ˜  y 6. 27 2 8 5 3 9  y  ˜ y 7. 7 52 3    8. 1 2 44 5 5 2  ˜ 9. 2 2 2 5 4 5 4   10. 25 II. Scientific Notation Write the following in Scientific Notation. Write in expanded form. 000, 000, 000, 000, 000, 500, 120 3. 000523 0000000000.0 2. 000, 000, 350 1. 9 8 23 10 819.1 6. 10 3.0 5. 10 6.02 4.  u u u Simplify. Write answers in scientific notation. 24 6 3 10 3 8. 10 5 10 3 7.  u u u 5 3 5 4 9 10 2 10 2 10 3.2 10. 10 3 10 6 9.   u u u u u III. Substitution Find each value if 3 x , 4 y , and 2 z . z y x y x z xyz 3 .3 2 .2 4 .1    z x y xy z x 4 2 3 .5 5 .4 2    IV. Linear equations in one variable Solve the following for x. 3 x 5 x3 2 2. 6 48 x6 1.    x 43 2 1 x4 8 .4 0 2 x3 x 50 .3       

05/23/2002 2:10 elemalg.rtf V. Formulas 1. Solve nRT PV for T. 4. Solve 1 5 y 2 x  for y. 2. Solve y = 3x + 2 for x. 5. Solve x4 hx y  for x. 3. Solve r2 C S for r. VI. Word Problems 1. One number is 5 more than twice another number. The sum of the numbers is 35. Find the numbers. 2. Ms. Jones invested $18,000 in two accounts. One account pays 6% simple interest and the other pays 8%. Her total interest for the year was $1, 290. How much did she have in each account? 3. How many liters of a 40% solution and an16% solution must be mixed to obtain 20 liters of a 22% solution? 4. Sheila bought burgers and fries for her children and some friends. The burgers cost $2.05 each and the fries are $.85 each. She bought a to tal of 14 items, for a total cost of $19.10. How many of each did she buy? VII. Inequalities Solve and graph on the number line. 1. 3 7 2 t x 2. 3 2 3 25     x x 3. 12 1 4 3 d    x x VIII. Exponents & polynomials Simplify and write answers with positive exponents. 1. 4 4 5 6 5 3 2 2      x x x x 6. 2 2 3 4 8 16 32 24 x x x x   2. 23 7 3 2 3 4 5 3 2 c b a c b a    7. 7 2 5 3 2   x x x 3. 2 3 6 5 0 2 3   z xy z y x 8. 9 6 9 5 2 4 26 bc a c b a    4. 49 7 5 c b a 9. 2 6 5 a 5. 64 3 2 2 6 2 4 z y x z y x   IX. Factoring 1. 6 5 2   x x 5. 4 4 4 64 y x  2. 6 5 2   x x 6. 27 8 3 x 3. 36 4 2 x 7. 36 84 49 2   y y 4. 4 2 x 8. 3 12 12 2   x x

05/23/2002 3:10 elemalg.rtf X. Quadratic Equations 1. 0 2 9 4 2   a a 4. 0 2 5 3 2   x x 2. 0 81 9 2  x 5. 16 2 3 2 x 3. 30 6 25 2  x 6. 0 4 2 2   r r XI. Rational Expressions Perform the following operations and simplify where possible. If given an equation, solve for the variable. 1. a a a a    2 3 2 2 4 6. xy y x 1 1 2 2. 2 3 4 1 3 2 2     x x x 7. 4 5 1 1 1 2    x x 3. 12 4 16 12 8 2 3 18 6 2   ˜    x x x x x 8. k k k 2 3 1 3   4. 2 2 2 2 4 8 2 8 2 16 x x x x x x    y    9. x x x 7 4 3 5   5. 1 1 3   x x XII. Graphing Graph each equation on the coordinate axis. 1. 6 2 3  y x 2. 3 x 3. 2 y 4. 5 3 2   x y 5. 3 x y 6. 2 2  x y 7. 2 x y

05/23/2002 4:10 elemalg.rtf XIII. Systems of Equations Solve the following systems of equations. 1. 9 2 12 3 2     y x y x 2. 5 3 2 10 6 4   y x y x 3. 7 2 5 2   y x y x 4. 4 2 4 3 2     x y y x XIV. Radicals Simplify the following using the rules of radi cals (rationalize denominators). All variables represent positive numbers. 1. 10 8 5. 3 63yx 24 2. 4 4x 81 6. 162 7 32 5 18 2   3. 3 4 7. 3 5 3  4. 40 15 18 12 ˜ 8. 2 4 3 3 2 5 3 2   Answers I. Order of Operations When working with  yx and,,,, 2, onents exp , one must remember the order of the operations. First, parenthesis or exponents as one calculates from left to right. Second, multiplication or division as one calculates from the left to right. And finally, addition or subtraction as one calculates from left to right. 1.          1 12 1 2 14 1 2 5 9 4 4 5 3 0 2 13 2. 9 3 12 3 2 6 3 2 4 1 5      3. 147 4. 200 5. 3 6. 38 7. 6 7 13 7 10 3 7 52 3      8. 3 3 9 1 4 16 25 1 2 44 5 5 2     ˜ 9. -9 10. –25

05/23/2002 5:10 elemalg.rtf II. Scientific Notation All numbers in scientific nota tion have the following form: power 10 er restofnumb.it nonzerodig u . 20 14 8 10 205.1 000, 000, 000, 000, 000, 500, 120 3. 10 23.5 000523 0000000000.0 2. 10 5.3 000, 000, 350 1. u u u  19 0000000018.0 .6 000, 000, 300 .5 000, 000, 000, 000, 000, 000, 000, 602 .4 8 24 2 24 10 9 6 3 6 3 10 9 10 3 10 3 8. 10 5.1 10 15 10 10 53 10 5 10 3 7.    u u u u u ˜ u˜ u u 7 5 2 5 3 5 5 4 9 4 9 10 2.3 10 2 10 4.6 10 2 10 2 10 3.2 10. 10 2 10 10 3 6 10 3 10 6 9. u u u u u u u u u u    III. Substitution >@ 30 10 3 6 4 3 23 4 3 z3 yx .3 10 4 6 4 32 y x2 .2 32 8 24 24 2 4 3 z4 xyz .1                  50 8 6 163 24 32 4 3 z4 x2 y3 .5 12 13 12 13 4 3 2 35 xy z x5 .4 2 2             IV. Linear equations in one variable 2 x 2 x x3 x3 2 x3 x4 x3 2 x4 12 x3 14 12 x4 12 x3 14 x4 12 x3 12 2 4 x4 8 x 43 2 1 x4 8 .4 12 x .3 6 x 61 x 1 6 x x3 6 x3 x3 x2 6 x3 x2 15 9 x3 15 15 x2 9 x3 15 x2 3 x3 5 x3 2 3 3 x 5 x3 2 2. 9 x 6 54 6 x6 54 x6 48 6 48 48 x6 6 48 x6 1.  Ÿ  Ÿ     Ÿ   Ÿ     Ÿ   Ÿ     Ÿ      Ÿ    Ÿ  Ÿ    Ÿ  Ÿ     Ÿ   Ÿ  ¸¹ · ¨© §  Ÿ   Ÿ Ÿ Ÿ    Ÿ  V. Formulas 1. T nR PV nRT nRT nR PV nRT PV Ÿ Ÿ 2. x 3 2 y 3 x3 3 2 y x3 2 y 2 2 x3 2 y 2 x3 y  Ÿ  Ÿ  Ÿ   Ÿ  3. S 2 C r 4. 5 x2 5 y   5. x 4 h y 4 h 4 hx 4 h y 4 hx y x4 hx y  Ÿ    Ÿ  Ÿ 

05/23/2002 6:10 elemalg.rtf VI. Word Problems 1. Let x = “another number” forcing 2x + 5 = “One number.” x + 2x + 5 = 35 and x = 10. “One number” = 25 and “another number” = 10. 2. Let x = the dollars in the account paying 6% interest Then, 18,000 – x = the dollars in the account paying 8%. The interest dollars are calculated by multiplying the total dollars in the account by the interest rate. Hence: .06 x = the interest earned by the first account .08 (18,000 – x) = the interest ea rned by the second account. Adding up all the interest, .06x + .08(18,000 – x) = 1,290. Solving, x = 7,500. So, Ms. Jones has $7,500 in the account paying 6% interest and $10,500 in th e account paying 8% interest. 3. Use the following buckets: From the diagram, we get the equation: .4x + .16 (20 – x) = 20(.22) x = 5 and the answer is 5 liters at 40% and 15 liters at 16%. 4. Let x = the number of burgers and 14 – x = the number of fries. To get the total amount of money spent, multiply the number of items by the cost of the item. 2.05 x = the total dollars spent on burgers and .85 (14 – x) = the total dollars spent on fries. The equation is: 2.05x + .85 (14 – x) = 19.10. Solving the equation, x = 6. Hence, she bought 6 burgers and 8 fries. VII. Inequalities Solve inequalities the same as equations with one ex ception. When both sides are multiplied or divided by a negative number, remember to switch the direction of the inequality. 1. 5 x 2 10 2 x2 10 x2 7 3 7 7x-2 3 7 x2 t Ÿ t Ÿ t Ÿ  t  Ÿ t  2. -1 x 12 12x- 3- 2x 15- 10x- 3 x2 3 x25 ! Ÿ  Ÿ  Ÿ     3. 2 1 xd VIII. Exponents & Polynomials 1. Add like terms: 2 x x8 4 x4 x5 6 x5 x3 2 2 2        2. 12 64 12 64 66 14 8 610 6 14 62 6 8 102 237 3 2 345 c36 ba 36 cba 9 c b a4 1 c ba3 c b a 2 c ba3 cb a2            3. 48 2 6 35 0 2 3 650 z xy6 zz yy xx2 3 z xy2 zy x3  ˜ ˜     4. 36 28 20 36 28 20 4 4975 c b a c b a 1 cba   5. 8 26 30 26 30 8 26 308 24 18 12 2 124 6432 2 62 x z y 16 z y x 1 16 z y x 16 z y x z y x 16 zy x zy x4     6. 2 x4 x3 x8 x 16 x8 x 32 x8 x 24 x8 x 16 x 32 x 24 2 2 2 2 3 2 4 2 2 3 4       7. x x x x x x x x x x x 35 7 10 2 35 10 7 2 7 2 5 2 4 5 4 2 5 3 2         8. 6 8 06 8 9915 6 2 9 6 95 2 b2 a13 2 c ba13 2 c b a13 bc a4 c ba 26           9. 36 a60 a25 36 a30 a30 a25 6 a5 6 a5 6 a5 2 2 2         x 40 % 20 - x 16 % 20 liters 22 % 5 -1 2 1

05/23/2002 7:10 elemalg.rtf IX. Factoring Steps to factoring: 1. Always factor out the Greatest Common Factor (If possible). 2. Factor the first and third term. 3. Figure out the middle term. 1. 1 x 6 x   2. 6 x 1 x   3. 3 3 4  x x , Difference of two squares 4. Sum of two squares requires the complex number system to factor. Not factorable. 5. 2 2 2 2 2 2 4 4 4 4 y x4 y x2 y x24 y x4 y x44 y x 164 y4 x 64        6. Difference of two cubes: 2 2 3 3 b ab a b a b a     . Let a = 2x and b = 3 and use the formula to get : 9 x6 x4 3 x2 2    7. 26 y7  8. 21 23 x X. Quadratic Equations Steps: 1. Get zero on one side of the equals 2. Factor 3. Set each factor to zero 4. Solve for your variable If you can not factor the equation and the quadratic is in the form 0 c bx ax 2   , then use the quadratic formula. a2 ac4 b b x 2 r  1. -2 a or 4 1 a 0 2 a or 0 1 4a 0 2 a1 4a 0 2 a9 a4 2  Ÿ   Ÿ   Ÿ   2. 3, -3 3. 5 6 or x 5 6 x 0 6 x5 6- 5x 0 36 25x 30 30 30 6 25x 30 6 x 25 2 2 2  Ÿ  Ÿ  Ÿ    Ÿ  4. 2, 3 1 5. The solution is given below: -2 or x 3 2 x 0 2 x 2- 3x3 0 4 x4 x33 0 12 x 12 9x 16 16 16 4 x 12 9x 16 4 x 12 9x 16 2 x3 2 2 2 2 Ÿ  Ÿ   Ÿ   Ÿ     Ÿ   Ÿ  6. 5 1r

05/23/2002 8:10 elemalg.rtf XI. Rational Expressions 1. Need to find a common denominator (factor denominat ors to see what you need ), add, and then reduce (if possible) at the very end. 1 a 5 1 aa2 a 10 1 aa2 a6 1 aa2 a4 2 2 1 aa a3 a a 1 a2 4 1 aa a3 1 a2 4 a a a3 2 a2 4 2      ˜   ˜        2. This problem uses the same technique as above. Be careful of the subtraction. 2 x 1 x 1 x 10 x 2 x 1 x 1 x 4 x4 6 x3 2 x 1 x 1 x 4 x4 2 x 1 x 1 x 6 x3 1 x 1 x 1 x 2 x 4 2 x 2 x 1 x 1 x 3 1 x 2 x 4 1 x 1 x 3 2 x3 x 4 1 x 3 2 2                       ˜      ˜            3. To multiply fractions, factor and cancel first before multiplying. 2 x 6 3 x4 4 x34 2 x 4 x3 3 x6 3 x4 4 x34 2 x 4 x3 3 x6 12 x4 16 x 12 8 x2 x3 18 x62    ˜      ˜      ˜    4. Division is the same process with one extra step (invert & multiply): c d b a d c b a ˜ y . One other hint: 1 x x 1    (Continues on next page) 1 2 x 4 x x 2 2 x 4 x 2 x x 4 4 x 2 x 4 x x 2 2 x 4 x 2 x x 4 4 x 2 x 4 x x 2 x 2 4 x 2 x x 4 x 4 x 2 x 2 2 x 4 x 4 x 2 x x 4 x 4 x 4 8 x2 x 8 x2 x x 16 2 2 2 2     ˜          ˜          ˜         y        y    5. Factor and Reduce to get 1 x x2   . 6. Find the Lowest common denominator (LCD) for all fractions (xy), then multiply the numerator and denominator by the LCD. x y2 1 x y2 xy 1 y 1 x 2 xy xy xy 1 y 1 x 2   ¸¸ ¹ · ¨¨ © §  ˜  7. Annihilate the denominators by multiplying both sides of the equation by the LCD >@ 41 x 1 x   , solve the resulting, fractionless equation, and check an swers in the original equation to insure that the denominators are not zero. 3 or x 5 3 x 0 3 x 3 5x 0 9 x 12 5x 5- x5 4- 4x 8 8x 1 x 1 x5 41 x 4 1 x2 4 1 x 1-x 4 5 1 x 1 1 x 2 4 1 x 1-x 4 5 1 x 1 1 x 2 2 2  Ÿ   Ÿ   Ÿ   Ÿ      Ÿ  »¼ º «¬ ª     Ÿ    Since these answers do not make the denominator zero in the original equation, they are the solution. 8. k = -3 9. x = -8

05/23/2002 9:10 elemalg.rtf XII. Graphing 1. 6 2 3  y x 2. 3 x 3. 2 y 4. 5 3 2   x y 5. 3 x y 6. 2 2  x y -3 2

05/23/2002 10:10 elemalg.rtf 7. 2 x y XIII. Systems of Equations The following are 2 dimensional linear equations. Each equation represents a line that can be graphed on the coordinate plane. The ultimate solution to a system of equations is for the lines to intersect in on point such as question #1 and #4. Question #2 has two equations and one is a multiple of the other. Hence, both formulas graph the same line making the solution infinite. The last possibility is in question #3. If you graph the lines in question #2, you will see that they are parallel and do not cross. This system has no solution. 1. The answer is x = 3 and y = 6. The work is below. 3 x 12 63 x2 equation first the into ng substituti Now, 6 y 18 4y 2x- 2- by Multiply 9 y2 x 12 y3 x2 12 y3 x2 Ÿ    o       4. x = 1, y = 2 XIV. Radicals Think of the index ( index ) as a door person. If it is two, then two identical factors inside become one outside. Also, remember these properties: n n n n n n b a b a ab b a ˜ 1. 5 4 5 2 2 5 2 2 2 2 108 10 8 ˜ ˜ ˜ ˜ ˜ ˜ 2. x 3 x x x x 3333 x 81 x 81 4 4 4 4 4 4 4 ˜ ˜ ˜ ˜˜˜ 3. 3 3 2 33 3 2 3 3 3 2 3 22 3 4 3 4 ˜ ˜ ˜ 4. 2 1 5 2 5 5 2 2 5 20 5 20 5 40 15 18 12 40 15 18 12 ˜ ˜ ˜ ˜ 5. 32 3 3 3 63 3 xy2 3 y y x 2 y y y y y y x x x322 2 y x 24 ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜˜˜˜ 6. Worked out below. 2 49 2 63 2 20 2 6 2 97 2 2 25 2 32 992 7 22 222 5 233 2 162 7 32 5 18 2   ˜  ˜˜  ˜ ˜˜  ˜˜˜˜  ˜˜   7. 22 3 3 5 3 25 3 3 5 3 5 3 5 3 5 3 3 5 3      ˜¸¸ ¹ · ¨¨ © §   8. 6 7 22 40 6 15 6 8 18 4 20 6 15 6 8 9 6 2 4 3 32 5 3 2