File Download Area

Information about "Australian Mathematics Competition AMC Practice Questions and Solutions - Senior.pdf"

  • Filesize: 137.55 KB
  • Uploaded: 27/08/2019 15:58:32
  • Status: Active

Free Educational Files Storage. Upload, share and manage your files for free. Upload your spreadsheets, documents, presentations, pdfs, archives and more. Keep them forever on this site, just simply drag and drop your files to begin uploading.

Download Urls

  • File Page Link
    https://www.edufileshare.com/05b2e70284e6b420/Australian_Mathematics_Competition_AMC_Practice_Questions_and_Solutions_-_Senior.pdf
  • HTML Code
    <a href="https://www.edufileshare.com/05b2e70284e6b420/Australian_Mathematics_Competition_AMC_Practice_Questions_and_Solutions_-_Senior.pdf" target="_blank" title="Download from edufileshare.com">Download Australian Mathematics Competition AMC Practice Questions and Solutions - Senior.pdf from edufileshare.com</a>
  • Forum Code
    [url]https://www.edufileshare.com/05b2e70284e6b420/Australian_Mathematics_Competition_AMC_Practice_Questions_and_Solutions_-_Senior.pdf[/url]

[PDF] Australian Mathematics Competition AMC Practice Questions and Solutions - Senior.pdf | Plain Text

AMC PRACTICE QUESTIONS AND SOLUTIONS Senior Copyright © 2014, 2019 Australian Mathematics Trust AMTT Limited ACN 083 950 341 (Set1)                                \b                         ­ ­  €     €    €   €    €  €               €    ‚ \b               €     ƒ € €     €            € „ €      …     €  €        \b                 „      

Due to the right-angled triangleP QS , Pythagoras’ theorem gives QS= 4\b Then  QRS is isosceles, so its altitude RTbisects QS\b R S x P 5 Q 3 T 2 2 30 β—¦ 60 β—¦ || || Now,S RT is standard 30 β—¦,60 β—¦,90 β—¦triangle with RT:RS :ST =1:2: √ 3 so that x= RS = 2√3ST= 4√3= 4√ 3 3 , hence (D)\b Comment This problem can also be solved using trigonometry: x= 2 cos 30 β—¦=4 √3. 4. 2014 S20 Given that f 1(x)= x x +1 and f n+1 (x)= f 1(f n(x)), then f 2014 (x) equals (A) x 2014 x+1 (B) 2014 x 2014x+1 (C) x x + 2014 (D) 2014 x x+1 (E) x 2014(x + 1) Alternative 1 f 2( x)= f x x+1  = xx+1xx+1 +1 = x x + x+1 = x 2 x +1 f 3( x)= x2x+1x2x+1 +1 = x x +2 x+1 = x 3 x +1 and in general, by induction f n( x)= x nx +1 = β‡’ f n+1 (x)= xnx +1xnx+1 +1 = x x + nx +1 = x ( n + 1)x +1, so f 2014 (x)= x 2014 x+1 , hence (A)\b Alternative 2 Consider 1 fn( x) \b 1 f1( x) = 1+ 1 x= β‡’ 1 fn +1 (x) = f 1(f n(x)) = 1 + 1 fn( x) = β‡’ 1 f2014 ( x) = 1+ 1 f2013 ( x) = 2+ 1 f2012 ( x) = βˆ™βˆ™βˆ™ βˆ™βˆ™βˆ™ = 2013 + 1 f1( x) = 2014 + 1 x= 2014 x+1 x Hence f 2014 (x)= x 2014x +1 , hence (A)\b AMC Practice Questions and Solutions β€” Senior

5.2014 S25 The sequence 2,2 2,2 22,2 222 ,... is defined by a 1= 2 anda n+1 =2 an for all nβ‰₯ 1. Wha\b is \bhe firs\b \berm in \bhe sequence grea\ber \bhan 1000 1000 ? (A) a 4=2 222 (B) a 5=2 2222 (C) a 6=2 22222 (D) a 7=2 222222 (E) a 8=2 2222222 We w a n \b a n>1000 1000 = 10 3000 . We know \bha\b a 1= 2,a 2=2 2= 4,a 3=2 4= 16 and a 4=2 16 = 65536, all less \bhan 10 3000 . Also 2 10 = 1024 >10 3, so \bha\b we can es\bima\be a 5, a 5=2 65536 = (2 10)6553 26> (10 3)6553 26= 64 Γ—10 19659 This is grea\ber \bhan 10 3000 , hence (B). 6. 2014 S26 Wha\b is \bhe larges\b \bhree-digi\b number wi\bh \bhe proper\by \bha\b \bhe number is equal \bo \bhe sum of i\bs hundreds digi\b, \bhe square of i\bs \bens digi\b and \bhe cube of i\bs uni\bs digi\b? Alternative 1 Le\b \bhe number be abc. Then 100a+ 10b +c = a+ b 2+c 3 99a+ 10b βˆ’b 2 = c(c 2βˆ’ 1) 99a +b(10 βˆ’b)=( cβˆ’ 1)c( c+ 1) Consider \bhe possibili\bies: 99 a b(10 βˆ’b) (c βˆ’ 1)c( c+ 1) 99 Γ—1=99 1Γ— 9=9 1Γ— 2Γ— 3=6 99 Γ—2=198 2Γ— 8=16 2Γ— 3Γ— 4=24 99 Γ—3=297 3Γ— 7=21 3Γ— 4Γ— 5=60 99 Γ—4=396 4Γ— 6=24 4Γ— 5Γ— 6=120 99 Γ—5=495 5Γ— 5=25 5Γ— 6Γ— 7=210 99 Γ—6=594 6Γ— 4=24 6Γ— 7Γ— 8=336 99 Γ—7=693 7Γ— 3=21 7Γ— 8Γ— 9=504 99 Γ—8=792 8Γ— 2=16 8Γ— 9Γ— 10 = 720 99 Γ—9=891 9Γ— 1=9 Looking a\b \bhe possibili\bies for 99 a+ b(10 βˆ’b)=( cβˆ’ 1)c( c+ 1), we have \bwo: 99 + 21 = 120 = β‡’a=1 ,b=3or7 ,c=5= β‡’n= 135 or n= 175. 495 + 9 = 504 = β‡’a=5 ,b=1or9 ,c=8= β‡’n= 518 or n= 598. So, \bhere are four 3-digi\b numbers which sa\bisfy \bhe requiremen\bs and \bhe larges\b of \bhese four numbers is 598, hence (598). AMC Practice Questions and Solutions β€” Senior

Alternative 2 The numb er abcis equal to a+ b 2+c 3, and these are the possible values of b 2andc 3: Di\bit β€’β€’β€’ β€’rit    β€’    β€’  β€’ β€’rat   β€’ β€’      β€’β€’ β€’t iΒ  lt2t ernati2 ve e vve \biv iΒ ve\b lt i\bt rt2  cfirst, then fillin\b in possible values for aand b. This trial-and-error search is presented here as a tree. a: a b 2: c3: + ab c A 729 a b9 β€’ β€’ β€’ β€’ b 9 8 2 729 8 b9 8+2+9 = 19 (no b 2) 7 72 9 7b 9 8 3 729 8 b9 7+3+9 = 19 (no b 2) a 512 ab8 6 51 2 6 b 8 6 00 5 12 608 6+0+2 =8 5 51 2 5b 8  5 81 512 598  5 01 512 518 5+1+2 =8 a 343 ab 7 abc < 598 Likewise for c =6 ,5 ,... The lar\best solution found is 598, and any solutions on branches c= 7, c= 6, ..., c = 1 must be less than this, hence (598). AMC Practice Questions and Solutions β€” Senior ATh ATh ATh ATh ATh ATh ATh ATh ATh ATh